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Stability has been examined for an ordered chain of monodisperse droplets under 
vacuum, which interact one with another via the evaporating molecules. 

There are many processes based on ordered flows of monodisperse materials, where an im- 
portant aspect is to maintain the order [I]. The original structure may be disrupted be- 
cause of a spread in the initial velocities [2] or because of external factors such as elec- 
tric and magnetic fields or interaction with a low-density gas. If the particles are charged, 
Coulomb forces can disrupt the system. However, even uncharged droplets can interact because 
of evaporation and condensation. Here we examine how such processes influence the stability. 

We consider droplets at temperature T in an infinite chain moving with velocity v. In 
a coordinate system moving with velocity v, the chain is at rest in the initial state. In the 
spaces between the drops, there is a vapor produced by evaporation, which expands in accor- 
dance with the ratio of the distance a between adjacent drops to the mean free path X. One 
can estimate X from [3] ~-(~d2ns) -l (Table i). The saturation vapor pressures of the substances 
were taken from [2, 4]. If X >> a, one can neglect collisions between molecules in the space 
around the drops, in which case the interactions are calculated as follows. 

The rate of evaporation j from unit surface is defined by the Hertz-Knudsen formula [5]: 

/ = xrt,s (kBT/2~ltno) ~/9-. (1) 

The evaporation (condensation) coefficient < for simplicity is taken as one. If r << L, a 
droplet can be considered as a point source of rectilinearly moving molecules. Then the force 
F between droplets due to the momentum transferred by the molecules is 

F = 2 k B T n / " / L  2 =  7 / L  2. (2) 

That force is thus analogous to a Coulomb repulsion force in that approximation. In this 
model, the first particle (source) is considered as a point source of molecules, which is 
applicable not only for r << L. If this is violated, (2) gives an upper bound to F. 

The potential energy U of a chain composed of N drops can be derived in the harmonic 
approximation on the assumption that only nearest neighbors interact: 

TABLE i. Mean Free Paths for Molecules of Various 
Substances 

[ 

Saturation vapor I Mean free 
Substance Temperature, K pressure, Pa I path, ~m 

Lithium 

Sodium 

DC-200 oil 

453,7 
700 

1000 

450 
500 
700 

301 

1,I9.10 -s  1.10 i2 
3,56.10 -~- 5.10 ~ 

97,2 300 

1,63.10 -~ 2.107 
9,49.10 -2 ! 1,5.10 ~ 

109 t80 

7,6.10 .7 3.10 s 
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in which 

U ~ ~ ,  [+z (xn, ~ - -  xn-< ~.)z, ( 3 )  

1 if a =  1, 2,  (4) 
A 

[ 2 i f  g = 3 .  

If M is the mass of a drop, the kinetic energy of the entire system is 

M "0 

We seek the solution as a superposition of quasicontinuous waves [6]: 

xn,= = ~ Ah,= exp (ikna), c,,g (6) 

in which k is the set of all nonequivalent values of the wave numbers, k:=2~v/N.a; v=O, +__I, 
+ 2  . . . . .  N / 2  . 

The equations of motion are solved for the new variables Ak~, and the transformation [6] 
to (6) then gives that: for ~ = i, 2 

x .... (0 = 7~I ,-,~ [ x~, ~ (0) ch (Qht) + ~'=a,~(O) sh (-Qkt) ] exp [ i  (m - -  n) ka], ( 7 ) 

and for ~ = 3 

Xm, ~ (t) = ~ -  Z x~,~_,+(0) cos (]/2P-ht) + x,~,~ (0) sin (~V~kt)  • exp [i (m - -  n) l~a], (8) 

in which ~k is the frequency of mode k, which is 

Qh --- +q (k) = e ( - -  k) = 2 (~/A4aS) ' /2  Isin (tea/2)l. (9) 

We see from (8) that the droplet motion along the axis is oscillatory; (7) implies that 
a droplet is also unstable in a position perpendicular to the axis. The maximal instability 
increment from (9) is 

9max = 2 ~/Ma91/2 = (6kB Tns r/~a3) l/2. ( 1 0 )  

The reciprocal of ama x defines the characteristic instability growth time: 

,~, (~  /ns T r)l / t  ( 11 )  

As n s ( T )  i s  e x p o n e n t i a l ,  we c o n c l u d e  t h a t  t h e  i n s t a b i i i t y  i s  g o v e r n e d  m a i n l y  by  t h e  t e m -  
p e r a t u r e .  

E s t i m a t e s  may be  made .  F d r  d r o p s  Of o i l  ( T a b l e  1)  a t  301 K, w i t h  r = 100 pm and  a = i 0 0 0  
~m, t h e  c h a r a c t e r i s t i c  i n s t a b i l i t y  t i m e  i s  x = 72 s e c .  F i g u r e  1 f i v e s  c a l c u l a t e d  x ( T )  f o r  
liquid metals. For lithium at a given temperature, the increment is less than for sodium, 
since the first has a lower vapor pressure. 

The transverse instability for a flow of evaporiting droplets increases the velocity 
variance and also the deviations from the equilibrium position. The over-all variance will 
be determined by the initial value (which is entirely dependent on the production device) 
and by this instability. We established the contribution from the latter to the velocity 
variance and the deviations. 

Let the displacements of all the droplets from the equilibrium positions be zero at 
the start: x~,~(0) =0 . Then (7) gives the velocity of droplet m in the transverse direc ~ 
tion (subscript ~ omitted) as 

502 



10 ', 

i 

lo-z ~'~\ ~ 

10 -3 
. . . . . . . .  % ~  ' "  . . . . .  Job'~ . . . . . . . .  ' 8 T 

Fig. i 

fi 

70 

20 

Fig. 2 

Fig. I. Characteristic instability time for a chain of liquid 
metal droplets as a function of temperature (droplet radius 
i00 Dm, distance apart i00 ~m). Solid line lithium, dashed line 
sodium. T in see, and T in K. 

Fig. 2. Dimensionless standard deviation for the velocity of an 
individual droplet as a function of dimensionless time. Solid 
line from (14), dashed line from (15). 
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Fig. 3. Dimensionless standard deviation from the equilibrium 
position as a function of dimensionless time: i) from (16); 
2) from (17); 3) (18) estimate. 

1 l 

x~ (0) ch (P-7,t) exp [i (m - -  10 teal, 

The interval between adjacent k tends to zero for N + ~, so one can replace ~ . . . .  ,~ la k 
(N.a/2~) f ...dk.. Integration [7] gives 

4,, (t) = ~ (-- I)'~-',.i,, (0)4o,~-~ d~'m~t), 
11 

by 

in which l~(m-n) is Bessel function of the first kind and imaginary argument with order 
2(m-n). We introduce the dimensionless time 0=t/T=Qmaxt and assume that the droplet 

(12) 

(13) 
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velocities are not correlated at the start, while the velocity distribution has standard 
deviation 62(0) (the same for each droplet), to get the dimensionless standard deviation 
of the velocity as a function of time as 

r N / 2  

gx--  6/(0) = [ / /  I~(0)-+ 2 "~ Igs(O). (14) 
8k (o) 

S =  1 

Up to quantities of the second order of smallness relative to 8 we have 

8k(O) = 1 @--1"0~. 
4 (15) 

Figure 2 shows (14) and (15). As in the derivation of (14), we get a formula for the di- 
mensionless standard deviation of the displacement from the equilibrium position. It is 
convenient first to integrate (12) with respect to time, and then 

~x(O)----- 6x(O) t I / -  o 12 N/2 o 
=-r v j ' 

0 S = I  0 

(16) 

in which 6x0(0) =62(0)0/Qmax 
(16) becomes 

is the deviation for noninteracting droplets. For 8 << i, 

(17) 8x(O) = 1 -t- 12 

It is of interest to derive 6x(0) in another way. We note that (7) has the upper 
bound (Xn,~(0)/Qmax)sh (-=maxt) ~ , so the deviation in dimensionless form does not exceed 

8x (0) = sh O/O. (18) 

The dimensionless standard deviations in the transverse coordinate are given by (16)-(18) 
and are shown in Fig. 3. 

Even relatively slight evaporation (molecular state) can lead to instability in a mono- 
disperse flow. The characteristic instability growth time is governed primarily by the tem- 
perature but is also dependent on the flow geometry. The transverse instability contributes 
to the velocity and displacement variances, with the variations occurring more slowly than 
exponentially. 

These trends should be considered in devising any system involving a flow of monodi- 
sperse material [8]. 

NOTATION 

a, distance between equilibrium positions of two adjacent droplets (lattice constant); 
d=3.10 -~ m , gas-kinetic molecular diameter; F, force between two droplets; j, evaporating- 
molecule flux density; K, kinetic energy; k, wave number, k B, Boltzmann's constant; L, distance 
between drops; .N=4~pr:V3 , drop mass; m0, molecular mass; N(N+ ~), number of droplets in 
a chain; _qs--ns(T), equilibrium molecular concentration in vapor; r, drop radius; t, time; 
U, potential energy; v, droplet chain speed; x~.=~x~,~(0;~, coordinate of droplet with number 
n; 2~.== 2.,.~i~I, projection of velocity on the ~ direction; ~, molecular mean free path; K, 
evaporation (condensation) coefficient; y= 2k~Tn~(~)r 4 , coefficient of proportionality in 
the formula defining force as a function of distance between drops; ~k=~(k), instability 
increment; C6nax, maximum value for instability increment; 0, density; ~, charactersitic 
instability time; e, dimensionless time; 6x, ~ , dimensional and dimensionless standard 
deviations of droplet position from equilibrium position; 6x0, standard deviation for a 
droplet not interacting with others; and 6~,~i , dimensional and dimensionless standard 
deviations in droplet from equilibrium position 
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THE BOUNDARY LAYER ON A REGULAR DROPLET CHAIN IN CONTROLLED MOTION 

V. I. Bezrukov, A. S. Vasil'ev, 
N. A: Razumovskii, and E. F. Sukhodolov 

UDC 532.5 :66 .069.83  

The retardation of a droplet chain by air resistance has been examined. Lee's 
method gives nomograms for the boundary-layer thickness, velocity distribution 
near the chain, and chain retardation. Experiments show that the model is appli- 
cable to important cases. 

Regular droplet chains may be used in directing the droplets to one, two, or three 
traps as well as in recording analog, graphic, and half-tone data and in,printing parts 
of characters. 

The viscous friction in air results in momentum transfer from the environment and boun- 
dary layers, while the chain itself is retarded. The boundary layer affects the following: 
the distances between nozzles in multijet printing; the sizes and positions of the traps and 
of the charging and deflecting electrodes; the lower edges to the characters; the correcting 
signals, etc. All droplets, no matter what their paths, travel various initial distances in 
the boundary layers. Figure 1 shows a physical model for determining the main boundary-layer 
features. Lee's method [i] has been modified for these conditions and gives a mathematical 
model for the boundary layer. We write the momentum conservation for the mass flows through 
the current cross section and through the end of the nozzle in the one-dimensional jet re- 
presentation: 

5(z) 
o 2 ~ 

9g2~ j" Ia (z) + y] v~ (z, V) dy + 9~ ~a z (z) v~ (z) = 9 2 ~ao ~ �9 ( I )  
0 

The rate of momentum loss along the path due to boundary-layer friction is 

d [9~aZ (z) v~(z)] = 2~a (z) Vg Ovg(z, Y) I 
-d~ O!-----~ ~=o" (2) 

The condition for jet continuity is 

~a 2 (z) v~ (z) = ~a~V~o. (3) 

The velocity profile for the air flow in the boundary layer in logarithmic approximation is 
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